Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1283093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148867

RESUMO

Scots pine (Pinus sylvestris L.) is an evergreen coniferous tree with wide distribution and good growth performance in a range of habitats. Therefore, wood from P. sylvestris is produced in many managed forests and is frequently used in industry. Despite the importance of pine wood, we still do not fully understand its molecular structure what limits improvements in its processing. One of the basic features leading to variation in wood properties is the presence of earlywood and latewood which form annual growth rings. Here, we characterise biochemical traits that differentiate cell walls of earlywood and latewood in Scots pine. We discover that latewood is less recalcitrant to enzymatic digestion, with galactoglucomannan showing particularly pronounced difference in accessibility. Interestingly, characterisation of lignin reveals a higher proportion of coniferaldehydes in pine latewood and suggests the presence of a different linkage landscape in this wood type. With complementary analysis of wood polysaccharides this enabled us to propose the first detailed molecular model of earlywood and latewood and to conclude that the variation in lignin structure is likely the main determinant of differences in recalcitrance observed between the two wood types in pine. Our discoveries lay the foundation for improvements in industrial processes that use pine wood since we show clear pathways for increasing the efficiency of enzymatic processing of this renewable material. Our work will help guide future breeding of pine trees with desired timber properties and can help link molecular structure of softwood cell walls to function of the different types of xylem in conifers.

2.
Biotechnol Biofuels Bioprod ; 16(1): 68, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076886

RESUMO

BACKGROUND: To realize the full potential of softwood-based forest biorefineries, the bottlenecks of enzymatic saccharification of softwood need to be better understood. Here, we investigated the potential of lytic polysaccharide monooxygenases (LPMO9s) in softwood saccharification. Norway spruce was steam-pretreated at three different severities, leading to varying hemicellulose retention, lignin condensation, and cellulose ultrastructure. Hydrolyzability of the three substrates was assessed after pretreatment and after an additional knife-milling step, comparing the efficiency of cellulolytic Celluclast + Novozym 188 and LPMO-containing Cellic CTec2 cocktails. The role of Thermoascus aurantiacus TaLPMO9 in saccharification was assessed through time-course analysis of sugar release and accumulation of oxidized sugars, as well as wide-angle X-ray scattering analysis of cellulose ultrastructural changes. RESULTS: Glucose yield was 6% (w/w) with the mildest pretreatment (steam pretreatment at 210 °C without catalyst) and 66% (w/w) with the harshest (steam pretreatment at 210 °C with 3%(w/w) SO2) when using Celluclast + Novozym 188. Surprisingly, the yield was lower with all substrates when Cellic CTec2 was used. Therefore, the conditions for optimal LPMO activity were tested and it was found that enough O2 was present over the headspace and that the reducing power of the lignin of all three substrates was sufficient for the LPMOs in Cellic CTec2 to be active. Supplementation of Celluclast + Novozym 188 with TaLPMO9 increased the conversion of glucan by 1.6-fold and xylan by 1.5-fold, which was evident primarily in the later stages of saccharification (24-72 h). Improved glucan conversion could be explained by drastically reduced cellulose crystallinity of spruce substrates upon TaLPMO9 supplementation. CONCLUSION: Our study demonstrated that LPMO addition to hydrolytic enzymes improves the release of glucose and xylose from steam-pretreated softwood substrates. Furthermore, softwood lignin provides enough reducing power for LPMOs, irrespective of pretreatment severity. These results provided new insights into the potential role of LPMOs in saccharification of industrially relevant softwood substrates.

3.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 387-400, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071393

RESUMO

Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.


Assuntos
Mananas , Manosidases , Manosidases/química , Manosidases/metabolismo , alfa-Manosidase/metabolismo , Mananas/química , Mananas/metabolismo , Manose/química , Manose/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Polissacarídeos/química , Especificidade por Substrato
4.
Int J Biol Macromol ; 232: 123365, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36690236

RESUMO

Feruloyl esterases (FAEs, EC 3.1.1.73) catalyze the hydrolytic cleavage of ester bonds between feruloyl and arabinosyl moieties in arabinoxylans. Recently, we discovered that two bacterial FAEs could catalyze release of diferulic acids (diFAs) from highly substituted, cross-linked corn bran arabinoxylan. Here, we show that several fungal FAEs, notably AnFae1 (Aspergillus niger), AoFae1 (A. oryzae), and MgFae1 (Magnaporthe oryzae (also known as M. grisae)) also catalyze liberation of diFAs from complex arabinoxylan. By comparing the enzyme kinetics of diFA release to feruloyl esterase activity of the enzymes on methyl- and arabinosyl-ferulate substrates we demonstrate that the diFA release activity cannot be predicted from the activity of the enzymes on these synthetic substrates. A detailed structure-function analysis, based on AlphaFold2 modeled enzyme structures and docking with the relevant di-feruloyl ligands, reveal how distinct differences in the active site topology and surroundings may explain the diFA releasing action of the enzymes. Interestingly, the analysis also unveils that the carbohydrate binding module of the MgFae1 may play a key role in the diFA releasing ability of this enzyme. The findings contribute further understanding of the function of FAEs in the deconstruction of complex arabinoxylans and provide new opportunities for enzyme assisted upgrading of complex bran arabinoxylans.


Assuntos
Hidrolases de Éster Carboxílico , Ácidos Cumáricos , Hidrolases de Éster Carboxílico/química , Ácidos Cumáricos/química , Aspergillus niger , Especificidade por Substrato
5.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430284

RESUMO

Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara in monosubstituted xylosyl residues (Xyl) (ABF-m2,3). Nevertheless, in AX a substantial number of Xyls have two Aras (i.e., disubstituted), which are unaffected by ABFs from GH51 and GH62. To date, only two fungal enzymes have been identified (in GH43_36) that specifically release the α-(1→3)-Ara from disubstituted Xyls (ABF-d3). In our research, phylogenetic analysis of available GH43_36 sequences revealed two major clades (GH43_36a and GH43_36b) with an expected substrate specificity difference. The characterized fungal ABF-d3 enzymes aligned with GH43_36a, including the GH43_36 from Humicola insolens (HiABF43_36a). Hereto, the first fungal GH43_36b (from Talaromyces pinophilus) was cloned, purified, and characterized (TpABF43_36b). Surprisingly, TpABF43_36b was found to be active as ABF-m2,3, albeit with a relatively low rate compared to other ABFs tested, and showed minor xylanase activity. Novel specificities were also discovered for the HiABF43_36a, as it also released α-(1→2)-Ara from a disubstitution on the non-reducing end of an arabinoxylooligosaccharide (AXOS), and it was active to a lesser extent as an ABF-m2,3 towards AXOS when the Ara was on the second xylosyl from the non-reducing end. In essence, this work adds new insights into the biorefinery of agricultural residues.


Assuntos
Triticum , Xilanos , Filogenia , Xilanos/química
6.
J Agric Food Chem ; 70(41): 13349-13357, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36205442

RESUMO

Corn bran is an abundant coprocessing stream of corn-starch processing, rich in highly substituted, diferuloyl-cross-linked glucurono-arabinoxylan. The diferuloyl cross-links make the glucurono-arabinoxylan recalcitrant to enzymatic conversion and constitute a hindrance for designing selective enzymatic upgrading of corn glucurono-arabinoxylan. Here, we show that two bacterial feruloyl esterases, wtsFae1A and wtsFae1B, each having a carbohydrate-binding module of family 48, are capable of cleaving the ester bonds of the cross-linkages and releasing 5-5', 8-5', 8-5' benzofuran, and 8-O-4' diferulate from soluble and insoluble corn bran glucurono-arabinoxylan. All four diferulic acids were released at similar efficiency, indicating nondiscriminatory enzymatic selectivity for the esterified dimer linkages, the only exception being that wtsFae1B had a surprisingly high propensity for releasing the dimers, especially 8-5' benzofuran diferulate, indicating a potential, unique catalytic selectivity. The data provide evidence of direct enzymatic release of diferulic acids from corn bran by newly discovered feruloyl esterases, i.e., a new enzyme activity. The findings yield new insight and create new opportunities for enzymatic opening of diferuloyl cross-linkages to pave the way for upgrading of recalcitrant arabinoxylans.


Assuntos
Benzofuranos , Zea mays , Zea mays/química , Hidrolases de Éster Carboxílico/química , Xilanos/química , Ácidos Cumáricos/química , Fibras na Dieta , Ésteres , Amido , Esterases
7.
Plant Cell ; 34(11): 4600-4622, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929080

RESUMO

Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned ß-galactoglucomannan (ß-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of ß-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that ß-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis ß-GGM synthesis mutants show no obvious growth defects, genetic crosses between ß-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of ß-GGM and XyG in PCWs.


Assuntos
Arabidopsis , Xilanos , Arabidopsis/genética , Parede Celular/química , Celulose
8.
Glycobiology ; 32(4): 304-313, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34939126

RESUMO

Glycoengineering ultimately allows control over glycosylation patterns to generate new glycoprotein variants with desired properties. A common challenge is glycan heterogeneity, which may affect protein function and limit the use of key techniques such as mass spectrometry. Moreover, heterologous protein expression can introduce nonnative glycan chains that may not fulfill the requirement for therapeutic proteins. One strategy to address these challenges is partial trimming or complete removal of glycan chains, which can be obtained through selective application of exoglycosidases. Here, we demonstrate an enzymatic O-deglycosylation toolbox of a GH92 α-1,2-mannosidase from Neobacillus novalis, a GH2 ß-galactofuranosidase from Amesia atrobrunnea and the jack bean α-mannosidase. The extent of enzymatic O-deglycosylation was mapped against a full glycosyl linkage analysis of the O-glycosylated linker of cellobiohydrolase I from Trichoderma reesei (TrCel7A). Furthermore, the influence of deglycosylation on TrCel7A functionality was evaluated by kinetic characterization of native and O-deglycosylated forms of TrCel7A. This study expands structural knowledge on fungal O-glycosylation and presents a ready-to-use enzymatic approach for controlled O-glycan engineering in glycoproteins expressed in filamentous fungi.


Assuntos
Celulose 1,4-beta-Celobiosidase , Manose , Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/metabolismo , Glicosilação , Manose/metabolismo , Manosidases/genética , Manosidases/metabolismo , alfa-Manosidase/metabolismo
9.
Biotechnol Biofuels ; 14(1): 183, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530892

RESUMO

BACKGROUND: Endo-ß-1,4-galactanases are glycoside hydrolases (GH) from the GH53 family belonging to the largest clan of GHs, clan GH-A. GHs are ubiquitous and involved in a myriad of biological functions as well as being widely used industrially. Endo-ß-1,4-galactanases, in particular hydrolyse galactan and arabinogalactan in pectin, a major component of the primary plant cell wall, with important functions in plant defence and application in the food and other industries. Here, we explore the family's biological diversity by characterizing the first archaeal and hyperthermophilic GH53 galactanase, and utilize it as a scaffold for engineering enzymes with different product lengths. RESULTS: A galactanase gene was identified in the genome of the anaerobic hyperthermophilic archaeon Ignisphaera aggregans, and the isolated catalytic domain expressed and characterized (IaGal). IaGal presents the typical (ßα)8 barrel structure of clan GH-A enzymes, with catalytic carboxylates at the end of the 4th and 7th barrel strands. Its activity optimum of at least 95 °C and melting point over 100 °C indicate extreme thermostability, a very advantageous property for industrial applications. If enzyme depletion is reduced, so is the need for re-addition, and thus costs. The main stabilizing features of IaGal compared to other structurally characterized members are π-π and cation-π interactions. The length of the substrate binding site-and thus produced oligosaccharide products-is intermediate compared to previously characterized galactanases. Variants inspired by the structural diversity in the GH53 family were rationally designed to shorten or extend the substrate binding groove, in order to modulate product length. Subsite-deleted variants produced shorter products than IaGal, as do the fungal galactanases inspiring the design. IaGal variants engineered with a longer binding site produced a less expected degradation pattern, though still different from that of wild-type IaGal. All variants remained extremely stable. CONCLUSIONS: We have characterized in detail the most thermophilic endo-ß-1,4-galactanase known to date and successfully engineered it to modify the degradation profile, while maintaining much of its desirable thermostability. This is an important achievement as oligosaccharide products length is an important property for industrial and natural GHs alike.

10.
Nat Commun ; 12(1): 3847, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158485

RESUMO

Enzyme reactions, both in Nature and technical applications, commonly occur at the interface of immiscible phases. Nevertheless, stringent descriptions of interfacial enzyme catalysis remain sparse, and this is partly due to a shortage of coherent experimental data to guide and assess such work. In this work, we produced and kinetically characterized 83 cellulases, which revealed a conspicuous linear free energy relationship (LFER) between the substrate binding strength and the activation barrier. The scaling occurred despite the investigated enzymes being structurally and mechanistically diverse. We suggest that the scaling reflects basic physical restrictions of the hydrolytic process and that evolutionary selection has condensed cellulase phenotypes near the line. One consequence of the LFER is that the activity of a cellulase can be estimated from its substrate binding strength, irrespectively of structural and mechanistic details, and this appears promising for in silico selection and design within this industrially important group of enzymes.


Assuntos
Algoritmos , Celulases/metabolismo , Celulose/metabolismo , Simulação de Dinâmica Molecular , Biocatálise , Celulases/química , Hidrólise , Cinética , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
11.
Biotechnol Biofuels ; 13: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782472

RESUMO

BACKGROUND: Cellobiohydrolase from glycoside hydrolase family 7 is a major component of commercial enzymatic mixtures for lignocellulosic biomass degradation. For many years, Trichoderma reesei Cel7A (TrCel7A) has served as a model to understand structure-function relationships of processive cellobiohydrolases. The architecture of TrCel7A includes an N-glycosylated catalytic domain, which is connected to a carbohydrate-binding module through a flexible, O-glycosylated linker. Depending on the fungal expression host, glycosylation can vary not only in glycoforms, but also in site occupancy, leading to a complex pattern of glycans, which can affect the enzyme's stability and kinetics. RESULTS: Two expression hosts, Aspergillus oryzae and Trichoderma reesei, were utilized to successfully express wild-types TrCel7A (WT Ao and WT Tr ) and the triple N-glycosylation site deficient mutants TrCel7A N45Q, N270Q, N384Q (ΔN-glyc Ao and ΔN-glyc Tr ). Also, we expressed single N-glycosylation site deficient mutants TrCel7A (N45Q Ao , N270Q Ao , N384Q Ao ). The TrCel7A enzymes were studied by steady-state kinetics under both substrate- and enzyme-saturating conditions using different cellulosic substrates. The Michaelis constant (K M ) was consistently found to be lowered for the variants with reduced N-glycosylation content, and for the triple deficient mutants, it was less than half of the WTs' value on some substrates. The ability of the enzyme to combine productively with sites on the cellulose surface followed a similar pattern on all tested substrates. Thus, site density (number of sites per gram cellulose) was 30-60% higher for the single deficient variants compared to the WT, and about twofold larger for the triple deficient enzyme. Molecular dynamic simulation of the N-glycan mutants TrCel7A revealed higher number of contacts between CD and cellulose crystal upon removal of glycans at position N45 and N384. CONCLUSIONS: The kinetic changes of TrCel7A imposed by removal of N-linked glycans reflected modifications of substrate accessibility. The presence of N-glycans with extended structures increased K M and decreased attack site density of TrCel7A likely due to steric hindrance effect and distance between the enzyme and the cellulose surface, preventing the enzyme from achieving optimal conformation. This knowledge could be applied to modify enzyme glycosylation to engineer enzyme with higher activity on the insoluble substrates.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32850731

RESUMO

Fungal genomes often contain several copies of genes that encode carbohydrate active enzymes having similar activity. The copies usually have slight sequence variability, and it has been suggested that the multigenecity represents distinct reaction optima versions of the enzyme. Whether the copies represent differences in substrate attack proficiencies of the enzyme have rarely been considered. The genomes of Aspergillus species encode several pectin lyases (EC 4.2.2.10), which all belong to polysaccharide lyase subfamily PL1_4 in the CAZy database. The enzymes differ in terms of sequence identity and phylogeny, and exhibit structural differences near the active site in their homology models. These enzymes catalyze pectin degradation via eliminative cleavage of the α-(1,4) glycosidic linkages in homogalacturonan with a preference for linkages between methyl-esterified galacturonate residues. This study examines four different pectin lyases (PelB, PelC, PelD, and PelF) encoded by the same Aspergillus sp. (namely A. luchuensis), and further compares two PelA pectin lyases from two related Aspergillus spp. (A. aculeatus and A. tubingensis). We report the phylogeny, enzyme kinetics, and enzymatic degradation profiles of the enzymes' action on apple pectin, citrus pectin, and sugar beet pectin. All the pectin lyases exerted highest reaction rate on apple pectin [degree of methoxylation (DM) 69%, degree of acetylation (DAc) 2%] and lowest reaction rate on sugar beet pectin (DM 56%, DAc 19%). Activity comparison at pH 5-5.5 produced the following ranking: PelB > PelA > PelD > PelF > PelC. The evolution of homogalacturonan-oligomer product profiles during reaction was analyzed by liquid chromatography with mass spectrometry (LC-MS) detection. This analyses revealed subtle differences in the product profiles indicating distinct substrate degradation preferences amongst the enzymes, notably with regard to acetyl substitutions. The LC-MS product profiling analysis thus disclosed that the multigenecity appears to provide the fungus with additional substrate degradation versatility. This product profiling furthermore represents a novel approach to functionally compare pectin-degrading enzymes, which can help explain structure-function relations and reaction properties of disparate copies of carbohydrate active enzymes. A better understanding of the product profiles generated by pectin modifying enzymes has significant implications for targeted pectin modification in food and biorefinery processes.

13.
Biotechnol Biofuels ; 13: 121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670408

RESUMO

BACKGROUND: Fungal beta-glucosidases (BGs) from glucoside hydrolase family 3 (GH3) are industrially important enzymes, which convert cellooligosaccharides into glucose; the end product of the cellulolytic process. They are highly active against the ß-1,4 glycosidic bond in soluble substrates but typically reported to be inactive against insoluble cellulose. RESULTS: We studied the activity of four fungal GH3 BGs on cellulose and found significant activity. At low temperatures (10 â„ƒ), we derived the approximate kinetic parameters k cat = 0.3 ± 0.1 s-1 and K M = 80 ± 30 g/l for a BG from Aspergillus fumigatus (AfBG) acting on Avicel. Interestingly, this maximal turnover is higher than reported values for typical cellobiohydrolases (CBH) at this temperature and comparable to those of endoglucanases (EG). The specificity constant of AfGB on Avicel was only moderately lowered compared to values for EGs and CBHs. CONCLUSIONS: Overall these observations suggest a significant promiscuous side activity of the investigated GH3 BGs on insoluble cellulose. This challenges the traditional definition of a BG and supports suggestions that functional classes of cellulolytic enzymes may represent a continuum of overlapping modes of action.

14.
J Biol Chem ; 294(46): 17339-17353, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31558605

RESUMO

Feruloyl esterases (EC 3.1.1.73), belonging to carbohydrate esterase family 1 (CE1), hydrolyze ester bonds between ferulic acid (FA) and arabinose moieties in arabinoxylans. Recently, some CE1 enzymes identified in metagenomics studies have been predicted to contain a family 48 carbohydrate-binding module (CBM48), a CBM family associated with starch binding. Two of these CE1s, wastewater treatment sludge (wts) Fae1A and wtsFae1B isolated from wastewater treatment surplus sludge, have a cognate CBM48 domain and are feruloyl esterases, and wtsFae1A binds arabinoxylan. Here, we show that wtsFae1B also binds to arabinoxylan and that neither binds starch. Surface plasmon resonance analysis revealed that wtsFae1B's Kd for xylohexaose is 14.8 µm and that it does not bind to starch mimics, ß-cyclodextrin, or maltohexaose. Interestingly, in the absence of CBM48 domains, the CE1 regions from wtsFae1A and wtsFae1B did not bind arabinoxylan and were also unable to catalyze FA release from arabinoxylan. Pretreatment with a ß-d-1,4-xylanase did enable CE1 domain-mediated FA release from arabinoxylan in the absence of CBM48, indicating that CBM48 is essential for the CE1 activity on the polysaccharide. Crystal structures of wtsFae1A (at 1.63 Å resolution) and wtsFae1B (1.98 Å) revealed that both are folded proteins comprising structurally-conserved hydrogen bonds that lock the CBM48 position relative to that of the CE1 domain. wtsFae1A docking indicated that both enzymes accommodate the arabinoxylan backbone in a cleft at the CE1-CBM48 domain interface. Binding at this cleft appears to enable CE1 activities on polymeric arabinoxylan, illustrating an unexpected and crucial role of CBM48 domains for accommodating arabinoxylan.


Assuntos
Carboxilesterase/química , Hidrolases de Éster Carboxílico/química , Ácidos Cumáricos/química , Receptores de Superfície Celular/química , Arabinose/química , Carboxilesterase/genética , Hidrolases de Éster Carboxílico/ultraestrutura , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/enzimologia , Hidrólise , Oligossacarídeos/química , Polissacarídeos/química , Conformação Proteica , Receptores de Superfície Celular/ultraestrutura , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Águas Residuárias/química , Xilanos/química
15.
ACS Cent Sci ; 5(6): 1067-1078, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31263766

RESUMO

Plant polysaccharides represent a virtually unlimited feedstock for the generation of biofuels and other commodities. However, the extraordinary recalcitrance of plant polysaccharides toward breakdown necessitates a continued search for enzymes that degrade these materials efficiently under defined conditions. Activity-based protein profiling provides a route for the functional discovery of such enzymes in complex mixtures and under industrially relevant conditions. Here, we show the detection and identification of ß-xylosidases and endo-ß-1,4-xylanases in the secretomes of Aspergillus niger, by the use of chemical probes inspired by the ß-glucosidase inhibitor cyclophellitol. Furthermore, we demonstrate the use of these activity-based probes (ABPs) to assess enzyme-substrate specificities, thermal stabilities, and other biotechnologically relevant parameters. Our experiments highlight the utility of ABPs as promising tools for the discovery of relevant enzymes useful for biomass breakdown.

16.
Enzyme Microb Technol ; 129: 109353, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31307573

RESUMO

A three catalytic domain multi-enzyme; a CE1 ferulic acid esterase, a GH62 α-l-arabinofuranosidase and a GH10 ß-d-1,4-xylanase was identified in a metagenome obtained from wastewater treatment sludge. The capability of the CE1-GH62-GH10 multi-enzyme to degrade arabinoxylan was investigated to examine the hypothesis that CE1-GH62-GH10 would degrade arabinoxylan more efficiently than the corresponding equimolar mix of the individual enzymes. CE1-GH62-GH10 efficiently catalyzed the production of xylopyranose, xylobiose, xylotriose, arabinofuranose and ferulic acid (FA) when incubated with insoluble wheat arabinoxylan (WAX-I) (kcat = 20.8 ± 2.6 s-1). Surprisingly, in an equimolar mix of the individual enzymes a similar kcat towards WAX-I was observed (kcat = 17.3 ± 3.8 s-1). Similarly, when assayed on complex plant biomass the activity was comparable between CE1-GH62-GH10 and an equimolar mix of the individual enzymes. This suggests that from a hydrolytic point of view a CE1-GH62-GH10 multi-enzyme is not an advantage. Determination of the melting temperatures for CE1-GH62-GH10 (71.0 ± 0.05 °C) and CE1 (69.9 ± 0.02), GH62 (65.7 ± 0.06) and GH10 (71 ± 0.05 °C) indicates that CE1 and GH62 are less stable as single domain enzymes. This conclusion was corroborated by the findings that CE1 lost ˜50% activity within 2 h, while GH62 retained ˜50% activity after 24 h, whereas CE1-GH62-GH10 and GH10 retained ˜50% activity for 72 h. GH62-GH10, when appended to each other, displayed a higher specificity constant (kcat/Km = 0.3 s-1 mg-1 ml) than the individual GH10 (kcat/Km = 0.12 s-1 ± 0.02 mg-1 ml) indicating a synergistic action between the two. Surprisingly, CE1-GH62, displayed a 2-fold lower kcat towards WAX-I than GH62, which might be due to the presence of a putative carbohydrate binding module appended to CE1 at the N-terminal. Both CE1 and CE1-GH62 released insignificant amounts of FA from WAX-I, but FA was released from WAX-I when both CE1 and GH10 were present, which might be due to GH10 releasing soluble oligosaccharides that CE1 can utilize as substrate. CE1 also displayed activity towards solubilized 5-O-trans-feruloyl-α-l-Araf (kcat = 36.35 s-1). This suggests that CE1 preferably acts on soluble oligosaccharides.


Assuntos
Esterases/química , Glicosídeo Hidrolases/química , Xilanos/química , Domínio Catalítico , Endo-1,4-beta-Xilanases/química , Hidrólise , Cinética , Esgotos/análise , Especificidade por Substrato
17.
Sci Rep ; 9(1): 2266, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783168

RESUMO

Endo-ß(1 → 4)-mannanases (endomannanases) catalyse degradation of ß-mannans, an abundant class of plant polysaccharides. This study investigates structural features and substrate binding of YpenMan26A, a non-CBM carrying endomannanase from Yunnania penicillata. Structural and sequence comparisons to other fungal family GH26 endomannanases showed high sequence similarities and conserved binding residues, indicating that fungal GH26 endomannanases accommodate galactopyranosyl units in the -3 and -2 subsites. Two striking amino acid differences in the active site were found when the YpenMan26A structure was compared to a homology model of Wsp.Man26A from Westerdykella sp. and the sequences of nine other fungal GH26 endomannanases. Two YpenMan26A mutants, W110H and D37T, inspired by differences observed in Wsp.Man26A, produced a shift in how mannopentaose bound across the active site cleft and a decreased affinity for galactose in the -2 subsite, respectively, compared to YpenMan26A. YpenMan26A was moreover found to have a flexible surface loop in the position where PansMan26A from Podospora anserina has an α-helix (α9) which interacts with its family 35 CBM. Sequence alignment inferred that the core structure of fungal GH26 endomannanases differ depending on the natural presence of this type of CBM. These new findings have implications for selecting and optimising these enzymes for galactomannandegradation.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/química , Modelos Moleculares , Polissacarídeos/química , beta-Manosidase/química , Domínio Catalítico , Especificidade por Substrato
18.
Biotechnol Biofuels ; 11: 194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026809

RESUMO

BACKGROUND: Softwood is a promising feedstock for lignocellulosic biorefineries, but as it contains galactoglucomannan efficient mannan-degrading enzymes are required to unlock its full potential. RESULTS: Boosting of the saccharification of pretreated softwood (Canadian lodgepole pine) was investigated for 10 fungal endo-ß(1→4)-mannanases (endomannanases) from GH5 and GH26, including 6 novel GH26 enzymes. The endomannanases from Trichoderma reesei (TresMan5A) and Podospora anserina (PansMan26) were investigated with and without their carbohydrate-binding module (CBM). The pH optimum and initial rates of enzyme catalysed hydrolysis were determined on pure ß-mannans, including acetylated and deacetylated spruce galactoglucomannan. Melting temperature (Tm) and stability of the endomannanases during prolonged incubations were also assessed. The highest initial rates on the pure mannans were attained by GH26 endomannanases. Acetylation tended to decrease the enzymatic rates to different extents depending on the enzyme. Despite exhibiting low rates on the pure mannan substrates, TresMan5A with CBM1 catalysed highest release among the endomannanases of both mannose and glucose during softwood saccharification. The presence of the CBM1 as well as the catalytic capability of the TresMan5A core module itself seemed to allow fast and more profound degradation of portions of the mannan that led to better cellulose degradation. In contrast, the presence of the CBM35 did not change the performance of PansMan26 in softwood saccharification. CONCLUSIONS: This study identified TresMan5A as the best endomannanase for increasing cellulase catalysed glucose release from softwood. Except for the superior performance of TresMan5A, the fungal GH5 and GH26 endomannanases generally performed on par on the lignocellulosic matrix. The work also illustrated the importance of using genuine lignocellulosic substrates rather than simple model substrates when selecting enzymes for industrial biomass applications.

19.
Crit Rev Biotechnol ; 38(7): 1121-1136, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29739247

RESUMO

Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 (CE15) are involved in microbial degradation of lignocellulosic plant materials. GEs are capable of degrading complex polymers of lignin and hemicellulose cleaving ester bonds between glucuronic acid residues in xylan and lignin alcohols. GEs promote separation of lignin, hemicellulose and cellulose which is crucial for efficient utilization of biomass as an energy source and feedstock for further processing into products or chemicals. Genes encoding GEs are found in both fungi and bacteria, but, so far, bacterial GEs are essentially unexplored, and despite being discovered >10 years ago, only a limited number of GEs have been characterized. The first laboratory scale example of improved xylose and glucuronic acid release by the synergistic action of GE with cellulolytic enzymes was only reported recently (improved C5 sugar and glucuronic acid yields) and, until now, not much is known about their biotechnology potential. In this review, we discuss the diversity, structure and properties of microbial GEs and consider the status of their action on natural substrates and in biological systems in relation to their future industrial use.


Assuntos
Biotecnologia , Esterases , Ácido Glucurônico , Celulose/metabolismo , Proteínas Fúngicas , Lignina/metabolismo
20.
Appl Microbiol Biotechnol ; 102(12): 5149-5163, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680901

RESUMO

ß-Mannanases catalyze the conversion and modification of ß-mannans and may, in addition to hydrolysis, also be capable of transglycosylation which can result in enzymatic synthesis of novel glycoconjugates. Using alcohols as glycosyl acceptors (alcoholysis), ß-mannanases can potentially be used to synthesize alkyl glycosides, biodegradable surfactants, from renewable ß-mannans. In this paper, we investigate the synthesis of alkyl mannooligosides using glycoside hydrolase family 5 ß-mannanases from the fungi Trichoderma reesei (TrMan5A and TrMan5A-R171K) and Aspergillus nidulans (AnMan5C). To evaluate ß-mannanase alcoholysis capacity, a novel mass spectrometry-based method was developed that allows for relative comparison of the formation of alcoholysis products using different enzymes or reaction conditions. Differences in alcoholysis capacity and potential secondary hydrolysis of alkyl mannooligosides were observed when comparing alcoholysis catalyzed by the three ß-mannanases using methanol or 1-hexanol as acceptor. Among the three ß-mannanases studied, TrMan5A was the most efficient in producing hexyl mannooligosides with 1-hexanol as acceptor. Hexyl mannooligosides were synthesized using TrMan5A and purified using high-performance liquid chromatography. The data suggests a high selectivity of TrMan5A for 1-hexanol as acceptor over water. The synthesized hexyl mannooligosides were structurally characterized using nuclear magnetic resonance, with results in agreement with their predicted ß-conformation. The surfactant properties of the synthesized hexyl mannooligosides were evaluated using tensiometry, showing that they have similar micelle-forming properties as commercially available hexyl glucosides. The present paper demonstrates the possibility of using ß-mannanases for alkyl glycoside synthesis and increases the potential utilization of renewable ß-mannans.


Assuntos
Aspergillus nidulans/enzimologia , Glicosídeos/biossíntese , Trichoderma/enzimologia , beta-Manosidase/metabolismo , Hidrólise , Mananas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...